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Abstract—This paper investigates the problem of modelling ohmic contacts for Monte Carlo simulation
of semiconductor devices. Several models are proposed with different velocity distributions for the injected
carriers. The influence of each model on the device physics near the contact is discussed. As a prototype
for this analysis we investigate the role of the ohmic contact on the electrical characteristics of a GaAs
Schottky-barrier diode under forward-bias condition. To get accurate results from the simulations of this
device, correct modelling of the ohmic contact is crucial. We have found that the best simulation of the
carrier dynamics near the contact is achieved by using a velocity-weighted Maxwellian distribution for
injecting the carriers, which provides flat profiles of the different magnitudes near the boundary and a
zero voltage drop at the contact. In addition, an appropriate time and space algorithm for carrier injection

must be applied.

1. INTRODUCTION

The Monte Carlo (MC) method has emerged as a
very important tool for the simulation of semicon-
ductor devices. Starting from the bulk properties of
materials[1], it has been extensively applied to analyse
the behaviour of electronic devices[2]. More and more
complex models have been developed to this end[3].
When going from bulk material to devices, an ade-
quate treatment of the boundaries is necessary, which
must reflect the physical processes taking place. These
boundary conditions (BC) are specially important
when the dimensions of the device are very small, and
may affect their behaviour[4]. The BC enter the
simulation at two levels: in the solution of Poisson’s
equation and in the carrier dynamics. We shall
deal with the second. While there exist well-
established and detailed models for the carrier dy-
namics at boundaries that do not allow particle
transmission (usually treated as elastic reflect-
ing boundaries)[5], there is no standard model for
the simulation of boundaries that allow particle
transmission.

We are specially interested in the modelling of
ohmic contacts (OC), which constitute the source
and sink of carriers in devices. Usually, an ideal
ohmic contact is considered as a region of the device
which is in thermal equilibrium even when a current
is flowing through it, so that the voltage drop at the
contact is negligible and no power is dissipated. To
reproduce this behaviour, the condition is generally
imposed that the free-carrier concentration of a
small region close to each contact should remain
constant and equal to the doping density. To do so
in an MC simulation, the number of (commonly

thermal) carriers necessary for neutrality to be main-
tained in these regions are injected at each time
step[5]. In addition, the contact absorbs all incident
carriers. In the case of charge accumulation, since
the charge is expected to diffuse, no carrier is in-
jected or deleted. This procedure is common to the
different models developed for the OC[2,5-11].
However, there are two aspects in which these
models differ, and often very few details on the latter
are given. Firstly, the velocity distribution function
from which the injected particle is randomly selected
(Maxwellian, velocity-weighted Maxwellian, dis-
placed Maxwellian, etc.), and secondly the algorithm
used to determine the moment at which the carrier
flows into the device and its spatial coordinates.
Only recently some attempts have been made to
establish an efficient and physically plausible model
for the OC[10,11].

The different carrier-injection schemes are not
always able to fully accomplish the requirements of
an ideal OC (charge neutrality, negligible voltage
drop). Frequently, strange spikes in the profile of
some magnitudes are observed and unknown contact
potentials are introduced. In order to determine the
model providing a better behaviour in MC simu-
lation, the aim of the present paper is to investigate
the influence of different OC models on the device
physics. As a workbench for this analysis, we have
made use of a GaAs Schottky-barrier diode (SBD)
where the contact directly affects the device perform-
ance. In this device the correct simulation of the OC
is crucial to get good results, since the barrier height
to be surpassed by the carriers for reaching the metal
may be strongly modified by the voltage drop at the
opposite ohmic boundary. The static characteristics
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and noise behaviour of the SBD will be analysed for
the different models. The simulation of the SBD is
one-dimensional. Although some modifications have
to be introduced, the conclusions reached for the
contacts may be basically extrapolated to the case of
two-dimensional simulations.

The paper is organized as follows. Section 2 de-
scribes the various aspects involved in the modelling
of an OC and the models to be analysed. Section 3
presents the details of the MC simulation of the SBD.
Section 4 reports the results of the implementation of
the OC models in the SBD and their influence on the
static and noise behaviour. Finally, the main con-
clusions are given in Section 3.

2. OHMIC CONTACT MODELS

As already explained, an OC is considered as a
region of the device which is characterized by local
charge neutrality and thermal equilibrium. Trying to
reproduce this behaviour, several injection schemes
can be applied. In the case of one-dimensional simu-
lations, when the active region of the device is far
from the contacts and charge neutrality of the whole
structure is expected, periodic BC may be applied: the
carriers reaching a contact are reinjected into the
opposite end with the same energy and wave vector
(or with a state randomly selected from a thermal
distribution){12,13]. This model is specially appropri-
ate for devices like n*nn* structures, where the
carriers reach the terminals of the device in a situation
close to thermal equilibrium, and the highly doped
n* regions considerably reduce the effect of carrier
injection on the device performance[10,12]. This
technique, although providing good results, has a
limited applicability. It cannot be used in the simu-
lation of two-dimensional devices with more than two
terminals or in the case of devices which are not
expected to be charge neutral. This applies for SBDs,
which are never charge neutral except under flat-band
conditions, and their behaviour is determined by the
correct number of carriers inside the device[2,14).
Some modified periodic BC may be used for SBD
simulation[15], but always with very restricted appli-
cation.

Therefore, alternative schemes must be developed,
allowing the number of carriers inside the device to
fluctuate during the simulation. With this aim, the
model was established in which charge neutrality is
maintained in a region close to the contact by inject-
ing periodically (usually each time step in which the
field is updated) the number of thermal electrons
necessary to equal the free-carrier concentration to
the impurity density[S]. In addition, any carrier
reaching the contact leaves the device. This is the
usual description of what is called an OC in MC
simulation. However, to know how the carrier injec-
tion takes place, further details must be specified: (a)
the way to determine the number of carriers which
must be injected at each time step, (b) the moment at

which the injected electrons enter the device, (¢) their
coordinates, and (d) the velocity distribution function
from which the state of the new particles is randomly
selected. We shall analyse several models, which differ
only in the last point (the distribution function). The
other details are common to all of them and are
explained below for a one-dimensional simulation.

We keep charge neutrality only in the cell adjacent
to the ohmic boundary. During each time step of
duration A, the free-carrier concentration in this cell,
n., is calculated according to the expression:
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where A is the cross-sectional area of the device, Ax is
the cell length, M_ is the number of carriers which are
present in the cell during the time step, and 6¢; is the
time each of them spends inside it. Note that 4z, may
coincide with At (the carrier remains the whole time
step inside the cell) or be only a fraction of At (the
carrier leaves or enters the cell during the time step).

At the end of the time step, n_ is compared with the
value of the doping density in the cell, ¥,. If n. > N,
no carrier is injected: the charge accumulation is
expected to disappear by diffusion. If n, < N, carrier
injection takes place. A first carrier is injected with an
initial position x =0 (which corresponds to the cell
edge adjacent to the OC) and its dynamics inside the
device are simulated during a time r Az, where r is a
random number uniformly distributed between 0 and
1. The free-carrier concentration in the cell adjacent
to the contact n_ is updated by taking into account the
presence of this new particle. The condition n, < N, is
checked again. If n, remains lower than N, a new
carrier is injected in the same way. This procedure
continues until the requirement n, = N, is reached to
a difference of 0.01%. Before injecting each carrier,
the following condition is checked:

rAt <t =(N,—n)AAxA1, (2)

where ¢, is the time resting to reach charge neutrality
in the cell (by introducing single carriers). If
rAt > 1., the time which is simulated for the injected
carrier is ¢, , since in principle, if the carrier remains
inside the cell, charge neutrality is exactly achieved
with a simulated time ¢, .

With this carrier injection scheme we are sure to
reproduce two important physical aspects at the
contact: the electrons are crossing the boundary
between the OC and the device (the position x = 0) at
random times during the time step (and not necess-
arily at the beginning or at the end), and the proper
dynamics of the injected carriers in the cell adjacent
to the contact determines the number of particles
which must be introduced (depending on the carriers
leaving the cell or remaining inside it). The usual
number of particles injected by other techniques is the
closest integer to (N, — n )/ A AxAt, implicitly assum-
ing that electrons enter the device at the beginning of
the time step and remain inside the first cell. In our
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case, by injecting carriers at random times during the
time step and simulating their dynamics, we normally
introduce a higher (and more realistic) number of
particles.

Within this scheme we are going to analyse several
models, which differ in the velocity distribution func-
tion from which the state of the new particles is
randomly selected. Since the carriers are initially
placed at the position x = 0, the particle velocity must
be directed into the device. Thus the velocity (the
component perpendicular to the contact surface) is
sampled only from the positive part of the distri-
butions. We shall always deal with non-degenerate
material.

2.1. Model 1 (M1): Maxwellian distribution

The carriers are injected according to a Maxwellian
distribution at the lattice temperature T

mee2

fv) x e T, (3)

where m* is the effective mass of electrons in the
semiconductor, Ky is Boltzmann’s constant and v is
the carrier velocity. In principle, this model would
predict zero current at the boundary.

2.2. Model 2 (M2): displaced Maxwellian distribution

In this case the carriers are injected according to
a displaced Maxwellian distribution at the lattice
temperature:

m¥r —rg)?
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where v, is the mean velocity which the carriers in the
cell adjacent to the contact should have according to
the current density flowing through the device, J:

J
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The value of v, is determined in each time step from
the current density calculated in the previous step.
This distribution only applies for the velocity com-
ponent perpendicular to the contact surface;
the parallel components are determined according
to a Maxwellian distribution. In principle, this
model would preserve current conservation at the
boundary[10,11].

2.3. Model 3 (M3): velocity-weighted Maxwellian
distribution

Since in our injection scheme we are simulating
carriers crossing the boundary between the OC
and the adjacent cell inside the device, to account
for the higher probability of particles with a large
velocity to enter the device, the Maxwellian distri-
bution should be weighted by the perpendicular
velocity[9]. This model considers the OC as a thermal
gas touching the boundary of the device, with its
electrons escaping into the cell adjacent to the con-
tact. In this case:

m*e?
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This is the distribution of the carriers crossing a given
position in a semiconductor at thermal equilibrium.
Note that carriers with null/low velocity have
null/very small probability of crossing the boundary.
Again, this distribution only applies for the velocity
component perpendicular to the contact surface, and
the parallel components are determined according to
a Maxwellian distribution.

The weighted Maxwellian could also be displaced
according to the mean velocity the carriers should
have to conserve the current:

fw)yocve Skt ™
Since the results show that the displacement in vel-
ocity changes very slightly the behaviour of the
contact, we shall not consider this case. The distri-
bution of eqn (6) already provides very satisfactory
results.

2.4. Model 4 (M4): reservoir method

This model is rather different from the previous
ones. Here we try to get an appropriate distribu-
tion of carriers in a reservoir region adjacent to
the semiconductor, so that the carrier dynamics
in this reservoir determines the injection into
the device[l16]. The reservoir acts as a source of
carriers.

This model is sketched in Fig. 1. A small region
(commonly a few cells) adjacent to the device in the
position of the contact is considered (reservoir), with
the same doping as the adjacent semiconductor. The
bias potential is applied to the node between the
reservoir and the device. The injection of carriers into
the reservoir occurs at the first cell of the opposite
side, and following M1. Poisson’s equation is only
solved inside the device, but not in the reservoir, and
the field in all cells of the reservoir takes the same
value as that of the first cell inside the device. This
ensures that in the boundary reservoir-device current
is conserved. Any strange unwanted effect associated
to the injection of carriers in the reservoir is far from
the edge of the device, and the particles have enough
time (and space) to stabilize their state according to
the electric field before entering the device, so that in
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Fig. 1. Schematic presentation of the reservoir model for an
ohmic contact.
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Fig. 2. Schematic drawing of the Schottky-barrier diode
under study.

the boundary we get an adequate distribution. The
real injection of carriers into the device occurs when
the particles naturally cross the boundary reservoir-
device.

It must be stressed that the four contact models
provide reasonable (and similar) results in the case of
long devices, where the possible effects associated to
the contacts are not crucial for their behaviour.
However, in the case of short devices these effects
may be very important on their performance, and
here lies the interest in finding an OC model with an
ideal behaviour. The description of the four models
given previously is for the case of one-dimensional
MC simulations. Though it may require some slight
modifications, their extension to two- or three-dimen-
sional simulations is relatively simple.

3. MONTE CARLO SIMULATION

To check the behaviour of the four contact models,
we have implemented them in the simulation of a
GaAs SBD under forward-bias conditions. We have
chosen this device because its performance is greatly
affected by the number of carriers inside it and by the
possible voltage drop at the ohmic contact, which
may change the potential barrier the electrons have to
surpass in order to reach the metal. A similar analysis
in other one-dimensional devices, like ntan™ struc-
tures, would also show the effects appearing at the
OCs, but their overall influence on the device per-
formance would be practically negligible due to the
presence of the highly doped r* regions[10,12].

The simulated SBD is shown schematically in
Fig. 2. It is modelled as a one-dimensional GaAs
n*-n-metal structure[17]. The n* region is 0.25 um
long with a doping of 10" cm~>. The OC is at its left
side. The » region is 0.45 um long with a doping of
2 x 10'cm~3. The Schottky barrier is at its end, with
the metal contact acting as a perfect absorbing
boundary: any carrier reaching the metal leaves the
device and no carrier is injected from the metal. The
barrier height used in the simulation is 0.738 eV
(barrier seen by the electrons at the Fermi level in the
metal), which leads to an effective built-in voltage (at
equilibrium) ¥;; of 0.658 V between the » region of

the semiconductor and the metal. No image-force
lowering is included.

The GaAs model takes into account the first
conduction band within a three-valley model (I', L
and X), all isotropic and non-parabolic. Material
parameters and scattering mechanisms can be found
in Ref.[18]. The MC simulation follows the standard
scheme[2]. The device is divided into equal cells of
100 A each, and the electric field is updated each 10 fs
by employing a self-consistent one-dimensional Pois-
son solver. Carrier injection takes place before the
field update. The cross-sectional area adopted for the
device in the simulation is 2 x 107> m?, which means
an average number of simulated carriers ranging
from 6300 to 6750 (depending on the bias and the
model). In the case of M4, the reservoir is formed by
10 extra cells, leading to an additional number of
carriers around 2000 and to a substantial increase in
the computation time. The simulations are performed
at a temperature of 300 K.

4. RESULTS

First we analyse the static characteristics of the
SBD obtained with the different OC models. Figure
3 shows the profiles of several quantities along the
device for an applied voltage of 0.55 V. These profiles
were calculated by averaging over 100 ps of simu-
lation once the device has reached the steady state.
We shall focus on the effects taking place near the
OC. In the case of the free-carrier concentration
[Fig. 3(a)], the only model providing a uniform
characteristic is M3. M1 and M2 show similar effects:
although in the mesh close to the OC they reproduce
the doping density (as is imposed by the model), in
the following cells a dip in the concentration occurs,
then approaching again the expected value. We at-
tribute this effect to the fact that the above models
inject carriers at the boundary with a too low vel-
ocity, which move slowly into the device. Thus,
although charge neutrality is imposed by the models
in the first cell, they are not able to provide adequate
carriers to maintain it in the following cells, since the
injected electrons need too long a time to reach them.
In fact, the electrons must be accelerated by the
electric field appearing because of the charge de-
pletion, and after some distance (500—600 A) charge
neutrality is achieved again. Note that even the
displaced Maxwellian of M2 is not able to provide
carriers with the appropriate velocity. Regarding M4
it is observed that the reservoir approaches much
more the ideal concentration, but still presents some
problems near the boundary introducing a slightly
lower number of carriers. We conclude from these
results that a right velocity distribution of the injected
electrons is essential to get a uniform concentration
near the contact and that the velocity-weighted
Maxwellian is the most appropriate one.

The potential along the structure is shown in
Fig. 3(b). Here, the influence of the contact models
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can be clearly detected. The charge depletion ob-
served near the OC with M1 and M2 leads to a
voltage drop which is very important for the device
behaviour, since it modifies the potential distribution
along the structure. Thus the barrier which the
carriers in the » region of the semiconductor must
surpass to reach the metal is increased by this voltage
drop. The charge depletion near the Schottky contact
noticed in Fig. 3(a) is consistent with this potential
barrier, being slightly more pronounced for the case
of M1 and M2. M3 and M4 provide a very similar
shape of the potential, with a very small voltage drop
appearing near the boundary in the case of M4. The
only model providing a completely flat characteristic
at the OC is M3. The electric field in the SBD
according to this potential profile is shown in
Fig. 3(c). Near the OC, the field associated with the
charge depletion of M1 and M2 is observed, reaching
a value of 2.5kVem™! at x = 0. In order to achieve
charge neutrality in the adjacent cells, this field tends
to accelerate into the device the too-slow carriers
injected by the boundary. It is clear that both models
lead to an OC which is not at thermal equilibrium.
M4 shows an intermediate behaviour, and again the
velocity-weighted Maxwellian (M3) provides the best
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shape of the electric field. The field related to the
built-in potential between the n* and » regions is the
same for all contacts. Near the Schottky barrier M1
and M2 yield higher values of the electric field as
corresponds to the higher barrier.

Of course, when trying to get zero field at the
contact we refer to the mean value along the whole
simulation. At a given moment the field may be
positive or negative at the boundary because of the
presence of space charge. What the contact should do
in such a case is to recover charge neutrality, so that
on average the mean value of the field along the
simulation is null.

Figure 3(d) gives the mean energy of the carriers
along the diode. Again, the influence of the contact
model is evident. While M3 and M4 inject carriers
providing an energy near the OC which corresponds
to the expected thermal energy 3Kz 7, M1 and M2
show significantly lower values. This fact supports
our hypothesis that the Maxwellian and the displaced
Maxwellian distributions inject carriers with a physi-
cally inconsistent velocity component perpendicular
to the contact. The value of this component in the
carriers introduced at the boundary should be higher,
as occurs when these distributions are weighted by
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Fig. 3. Stationary profiles obtained with different ohmic contact models: (a) free-carrier concentration,
(b) potential, (c) electric field and (d) energy at an applied voltage of 0.55 V in the Schottky-barrier diode
under study.
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Fig. 4. Comparison between the velocity distribution of the

carriers crossing the boundary reservoir-device in M4 at an

applied voltage of 0.55V and the velocity-weighted
Maxwellian distribution (M3).

the velocity. At the side of the Schottky contact
the cooling effect due to the barrier is clearly de-
tected[19].

In Fig. 4, the velocity-weighted Maxwellian
distribution (M3) is compared with the velocity
distribution of carriers crossing the boundary reser-
voir-device in M4 for an applied voltage of 0.55 V. As
can be observed, both curves are very similar, which
means that M3 reproduces correctly the velocity of
the carriers injected at the boundary without any
additional simulation of particles.

The current-voltage characteristic of the SBD ob-
tained with the different models of the OC is shown
in Fig. 5. We also present the results for the current
under forward-bias conditions given by the analytical
thermionic emission theory:
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Fig. 5. Current-voltage characteristic of the Schottky-

barrier diode under forward-bias conditions obtained with

different chmic contact models, together with the analytical
estimation according to thermionic emission theory.
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where ¢ is the absolute value of the electron
charge, # is Planck’s constant divided by 2n, ¢,,
is the work function of the metal, x; is the electron
affinity of the semiconductor and V is the applied
voltage. ¢, — . corresponds to the barrier height,
0.738 V in our case. Since our aim is to reproduce
the ideal behaviour of a contact (and not the real
effects which could take place inside it) we com-
pare our results with the ideal theory of
the Schottky diode (and not with experirental
data where non-ideal effects at the contact could
occur).

Two different regions can be clearly observed in
all curves according to the conditions V < V; and
V > V. In the former the current exhibits an ex-
ponential behaviour, which is determined by the
thermionic emission of carriers over the barrier. In
the latter the current tends to a linear behaviour
due to the disappearance of the barrier, and it is
the semiconductor series resistance which controls
the current in the device. Therefore, the compari-
son with the analytical theory [eqn (8)] must be
carried out in the first region. M3 and M4 achieve
an excellent agreement with the analytical result in
this range. The values of M4 are marginally lower
than those of M3. However, M1 and M2, showing
a similar exponential behaviour, provide consider-
ably lower values of the current, as may be
expected from the increase in the semiconductor-
metal barrier introduced by the voltage drop
at the OC. Therefore, we can conclude that
in MC simulation of a SBD, the role played by
the OC is decisive for obtaining correct results.
M3 and M4 are found to be the most suitable and
physically plausible models of an OC. M3 results
to be the most efficient one, since its implemen-
tation is easier and the computation time required
for the simulations is appreciably shorter.

At this point it must be emphasized that in the case
of other more “‘symmetric’’ devices (like n *nn ™ struc-
tures) it has been checked that the /-V characteristics
are not appreciably modified by the model used for
the OC. However, the same anomalous effects are
found near the contacts when using M1, M2 and M4.

In order to illustrate the influence of the OC model
on second-order terms, we present some results on the
noise behaviour of the SBD. Figure 6(a) shows the
autocorrelation function of current fluctuations C,(¢)
at an applied voltage of 0.6 V, and Fig. 6(b) shows its
Fourier transform, the spectral density S;(f). The
details of the calculation of these magnitudes can be
found in [17,20]. It is clear that the contact model
also affects the noise performance of the device.
Although the four models provide analogous shapes
of the curves, there are significant differences. The
autocorrelation functions exhibit an oscillatory be-
haviour associated to the coupling between carrier
velocity and self-consistent electric field introduced
by the n*-n homojunction[12,17,20]. As in the results
previously shown, the pairs of models M1-M2 and
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Fig. 6. (a) Autocorrelation function and (b) spectral density of current fluctuations in the Schottky-barrier
diode obtained with different ohmic contact models at an applied voltage of 0.6 V.

M3-M4 present similar results. In particular, the
correlation extends for longer times with M1 and M2.

The low-frequency value of the spectral density
with the four models fits rather well (to an accuracy
of about 15%, and within the error of the MC
method) the expectation of finding pure shot noise,
Le. §/(0)=2qI(15,17,20,21]. At higher frequencies
two peaks are observed. The first one is originated by
the carriers that have insufficient kinetic energy to
surpass the barrier and return to the neutral semi-
conductor[21]. The second one is associated with the
above-mentioned oscillatory behaviour in the auto-
correlation function[17,20}. While the frequency of
the second peak is independent of the model (but its
amplitude changes), the first one is displaced towards
higher frequencies for models M3 and M4 due to
the shorter depletion region near the Schottky
contact[21].

In the case of the noise, there is no clear criterion
to establish which one is the most appropriate model,
excepi the low-frequency value of the spectral den-
sity, which is favourable for the four models within
the statistical error of the MC technique. Neverthe-
less, it can be concluded that the OC model also
affects the behaviour of the fluctuations.

5. CONCLUSIONS

We have presented a detailed analysis of the
influence of ohmic contact (OC) models on Monte
Carlo (MC) simulation of semiconductor devices.
An algorithm to determine the number of carriers
to be injected at a contact, the moment at which
they enter the device and their coordinates has been
presented. Four different distributions for the vel-
ocity of the injected carriers have been analysed. A
GaAs Schottky-barrier diode (SBD) under forward-
bias conditions has been used to implement the
four models, and their effect on the static charac-
teristics and on the noise performance has been
studied. The main conclusions can be summarized
as follows:

SSE 39:4—-J

(i) The role played by an OC in MC simulation of
semiconductor devices may be essential, specially
in the case of short structures or when the
number of carriers inside the device determines
its performance (like in SBDs).

(ii) In order to introduce the correct number of
particles for achieving charge neutrality, not
only in the cell adjacent to the boundary but in
a longer region of the device close to the contact,
an appropriate time and space algorithm to
inject the carriers at the OC must be applied.

(iii)) Maxwellian or displaced-Maxwellian velocity
distribution functions for the injected carriers
lead to physically inconsistent effects in the
vicinity of the OC, affecting the free-carrier
concentration, the potential, the electric field, the
energy, etc., and modifying the ideal /-V charac-
teristics of the SBD due to a voltage drop at the
contact.

(iv) The reservoir method and the velocity-weighted
Maxwellian distribution provide similar and cor-
rect results, specially the latter. Flat profiles of
the different magnitudes, zero voltage drop at
the contact and 7-V characteristics in excellent
agreement with the thermionic emission theory
are obtained with them for the SBD.

(v) The noise behaviour of the SBD is also affected
by the choice of the OC model.

(vi) As a final conclusion we consider the velocity-
weighted Maxwellian injection as the most ap-
propriate and efficient model among those
analysed in this work. It reproduces all physical
requirements of an ideal OC, needs lower com-
putation time with respect to the reservoir
method and its implementation in a MC simu-
lator is easier.
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