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Abstract— We present a microscopic interpretation of elec-
tronic noise in semiconductor materials and two-terminal devices.
The theory is based on Monte Carlo simulations of the carrier
motion self-consistently coupled with a Poisson solver. Current
and voltage noise operations are applied and their respective
representations discussed. As application we consider the cases
of homogeneous materials, resistors, n*nn™ structures, and
Schottky-barrier diodes. Phenomena associated with coupling
between fluctuations in carrier velocity and self-consistent elec-
tric field are quantitatively investigated for the first time. At
increasing applied fields hot-carrier effects are found to be of
relevant importance in all the cases considered here. As a general
result, noise spectroscopy is found to be a source of valuable
information to investigate and characterize transport properties
of semiconductor materials and devices.

I. INTRODUCTION

LECTRONIC noise is here synonymous of current or
voltage fluctuations around a stationary value. Its ex-
istence reflects the presence of a large number of degrees
of freedom on a microscopic level which are averaged out
in the measurement of a given macroscopic quantity [1],
[2]. The primary quantity which describes electronic noise
is the spectral density of current (voltage) fluctuations Sy(f)
(Sv(f)). It can be measured more or less directly in different
ranges of the frequency f and microscopically interpreted from
the calculation of its theoretical counterpart which is the asso-
ciated correlation function Cy(t) (Cv(¢)). This methodology
has recently led to the development of a noise-spectroscopy
which has proven to be very fruitful for investigating transport
properties of materials and devices, as documented in a
systematic series of Noise Conferences [3]-[9].
In this paper we deal with the problem of how simulating
electronic noise from a microscopic point of view. To this end,
we make use of the Monte Carlo (MC) technique [10], [11]
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which, by naturally incorporating all the microscopic noise
sources, has recently emerged as a very powerful method.
The main issues which will be addressed are: 1) to present
a general theory and the algorithms for the calculation of the
current and voltage spectral densities; 2) to investigate systems
with increasing degree of complexity; and 3) to decompose
the obtained spectra in terms of their sources and spatial
contributions.

The paper is organized as follows. In Section II we present
the fundamentals of the theoretical approach. Section III is
devoted to applications of the theory- to physical systems
with increasing degree of complexity. Major conclusions are
summarized in Section IV.

II. THEORY

We develop a general theory of noise for a simple two-
terminal (one-port) device. After defining the basic quantities
of interest, the equilibrium properties are briefly recalled.
Then, we present the two modes of operation which are used
to study electronic noise: i.e., the current and voltage noise
operations. In this context, we derive algorithms to calculate
the current and voltage fluctuations. Finally, we discuss the
main advantages of using separately the current or voltage
noise spectra.

A. Basic Properties

In studying electronic noise two different modes of opera-
tion; which are mutually exclusive, can be used: current noise
operation and voltage noise operation [12]. In the former, the
voltage drop at the terminals of the device is kept constant
in time and the current fluctuations in the external circuit are
analyzed (Norton generator). This mode is realized by placing
an ideal voltage generator between the terminals of the sample,
current fluctuations being measured at the boundaries of a very
small load resistance in series with the device. In the latter the
current in the device is kept constant in time and the voltage
fluctuations at its terminals are analyzed (Thevenin generator).
This mode is realized by placing the sample in parallel with a
dc current generator and measuring voltage fluctuations at the
boundaries. Both modes are of interest since in general they
provide different and complementary information.

Let us first concentrate on current fluctuations. From the
Wiener—Khintchine theorem [13] it is

“+oo
Si(f) =2 / exp(i2n f1)Ci (1) dt M
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Cr(t) = STV (E)oIV (F' + 1) 1)

where 81V (t) = IV(t) — IV is the total current fluctuation
around the average value IV, the superscript V is to remind
that the applied voltage is taken to be constant in time, i.e.
current noise operation is considered, and the bar denotes time
average over t’. We notice that because of stationary conditions
this average is independent of ¢'.

By inverting (1) and setting ¢ = 0 we obtain the power
spectrum relation [13]:

5= [ s

By simply exchanging current with voltage, the analogous of
(1)=(3) can be written for voltage fluctuations when the total
current is taken to constant in time, i.e. voltage noise operation
is considered. Since spectral densities and correlation functions
describe second-rank tensorial properties, in the following we
assume cubic structures so that by applying the field along high
symmetry directions second-rank tensors are diagonal with one
longitudinal and two transverse components with respect to
the applied field.

At equilibrium, and for continuity under linear response
regime (i.e., V —0), fundamental relationships such as
Nyquist and Einstein relations (i.e., fluctuation-dissipation
theorem) give an exact theoretical framework [14]. The former
relates the value of the current (voltage) spectral-density to the
real part of the complex admittance Y (f) (complex impedance
Z(f)) through:

3

S1(f) = 4KpT Re[Y (/)] @)
Sv(f) = 4KpT Re[Z(f)] 5)

where K p is the Boltzmann constant and T the lattice tem-
perature. (We remark here the fact that the frequency depen-
dencies of S;(f) and Sy-(f) are in general different.) The
latter relates the static conductance G(0) = Re[Y(0)] to the
diffusion coefficient D and, for a homogeneous device with
cross-sectional area A and length L, is given by [14], [15]:

e*—_ _dlnN

(6)
where e is the electron charge, N the average number of free
carriers inside the sample and g the chemical potential of the
system treated within a grand-canonical statistical ensemble.
By substituting (6) in (4), a so called Nyquist-Einstein
relationship is obtained which, for a nondegenerate system
(ie., 0InN/8uo = 1/KpT), assumes the interesting form
(161, [17]:
o2
2
thus providing a direct relationship between noise (a many-
particle property) and diffusion (a single-particle property).
From (4)~(7) we learn that in the linear response regime a
noise measurement does not add any information yet available
from conductance (or diffusion for nondegenerate systems).
However, under nonlinear response (i.e., when quadratic ef-
fects in the applied fields become noticeable) Nyquist and

S;(0) = 4=-ND %)
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Einstein relationships no longer hold in general. As a con-
sequence, a noise measurement can provide new information
on the transport properties of the device. Furthermore, pro-
vided the device exhibits a positive differential resistance (or
conductance), via the small-signal impedance of the sample,
Z'(f), a so-called Langevin relationship holds {18]:

Sy(f)
S1(f)

Under nonlinear response, excess noise contributions (so-
called because they vanish for vanishing applied fields) can be
detected [13], [19]. It should be noticed that the fluctuations
which are responsible for this excess noise are often present
also in equilibrium. However, being associated with resistance
fluctuations, they manifest themselves only under nonequilib-
rium conditions [19]. In this context, the presence of a low
frequency 1/ f contribution (also called flicker noise) has been
found to be a common feature of excess noise, the origin of
which being the subject of many investigations [20]-[24], as
reported in other contributions of the present review. Here we
will not consider 1/f noise explicitly.

=1Z'(NI*. ®)

B. Microscopic Calculation

The theory underlying the above noise operations is devel-
oped in the following for the semiclassical case when a single
type of carriers (electrons or holes) is present. Provided the
length of the device is small compared to its lateral dimensions,
the flux of the displacement current density through the lateral
surfaces can be neglected and a one-dimensional treatment
can be applied [25]. By neglecting magnetic effects, which for
devices operating up to microwave frequencies (i.e., 300 THz)
is always well justified [26], the total current through each
cross-sectional area is the same and given by the so-called
Ramo-Schockley theorem [25], [27], [28]:

Nz (t)

I(t) =% 3 wia(t)

=1

Ad
- GOGrZE[V(L,t) - V(O, t)] (9)
where Np(t) is the total number of carriers at time ¢ inside
the device, v;.(t) the instantaneous value of the velocity com-
ponent in the field direction of the i-th particle, ¢y the vacuum
permittivity, and €, the relative static dielectric constant of
the background medium.
Under current noise operation, the applied voltage is kept
constant in time, and from (9) for the total current IV (¢) as
measured in the outside circuit we obtain:

Nt (t) e
’U,‘x(t) = iNT(t)Ud(t)

i=1

V() = (10)

where vq(t) = [1/Nr(t)] Z;\;Tlm viz(t) is the drift velocity.
Under voltage noise operation, the total current flowing in

the sample is kept constant in time, i.e., I(¢) = Iy, and from

(9) for the time derivative of the voltage drop at the contacts
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AVI(t) = [V(L,t) — V(0,)] we obtain:
Nr(t)
d I L e
ZAVI() = vl b2 Z viz(t) — I (11)

i=1

The instantaneous voltage drop between the terminals can be
obtained from a numerical integration of (11) over time [29].

C. Simulation

The determination of the current (voltage) correlation func-
tion is performed from the knowledge of the time series IV (t)
(AVI(t)) as calculated from an ensemble MC simulation
eventually coupled with a self-consistent Poisson solver, and
taking appropriate boundary conditions concerning carrier
injection-extraction from the contacts of the device. To this
end, the total simulation, neglecting the initial transient, is
recorded on a time-grid of step-size At. Then, by defining
the time length in which the correlation function should be
calculated as mAt, with m integer, the correlation function

Cx(t) (X = IV, AV') is obtained as:
Cx(jAL) = X(#X (¥ + jAL)
M-m
1 . S
= ; XGEADX[(i + §)At] (12)
with j = 0,1,...,m; M > m. Typical values are: M =

50 x m, m = 100. The corresponding Sx(f) is determined
by Fourier transformation.

Unless otherwise stated, in the following we consider peri-
odic boundary conditions at the contacts, which means that the
total number of carriers is kept constant, i.e., Nr(t) = N, thus
fulfilling the neutrality condition for the whole device at any
time. This condition is well verified provided the length of the
active region of the device is longer than the Debye length.

D. Discussion

Here we present separately the main advantages of current
and voltage noise operations (representations) and review
simple cases of relevant interest. The use of the current
representation enables a decomposition analysis to be carried
out. Three cases are considered in the following, namely:
1) diagonal and off-diagonal velocity; 2) carrier number and
drift-velocity; and 3) carrier mobility and drift-velocity.

Case 1) is of interest when some source of coupling among
carriers is present and Cr(t) can be decomposed in a diagonal
(single-particle) and off-diagonal (many-particle) term as [30]:

C,-(t):( )[N(Svl Voo t) + 3 5ui(0)6u; ()] (13)
i#j

Case 2) is of interest when the number of free carrier fluctuates
(number fluctuation) together with the drift-velocity (this may
happen because of the presence of trapping centers and/or of
different conducting bands). (Notice that this number fluctua-
tion should not be confused with shot-noise which is related
to the fluctuation of the total number of carriers inside the
sample [31] and which here is not considered.) Within a two-
level model for the number fluctuator, which consists of a
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conducting band and an impurity level supplying carriers,
C1(t) can be decomposed as [32]:

Ci(t) = ( g) {@?6v4(0)8va(t) + v226u(0)su(t)

)ou(t)]}
(14)

+ % Ta[6u(0)8va(t) + dva(0

where u(t), defined as the ratio between the number of free
carriers and the total number of impurities, is the instantaneous
fraction of free carriers in the conducting band. Case 3)
is of interest when the scatterer center fluctuates (mobility
fluctuation) together with the drift-velocity. Within a two-level
model for the mobility fluctuator, C;(t) can be decomposed
as [11]

o= (D) (P00 + () Faossm

+ %[@(o)avg’)(t) + 5050)(0)5u(t)]}
(15)

where the drift velocity has been decomposed into the sum
of two contrlbutlons responsible for thermal and excess noise
as v4(t) = 6vd )(t) + p(t)E, 6v(0)(t) being associated with
the Brownian-like motion of the carriers due to all scattering
mechanisms and p(¢)E, E being the electric field, with the
stochastic carrier mobility. We remark that in all cases cross
contributions are present together with diagonal contributions.
When the respective time scales are sufficiently different, one
can neglect the cross contributions whose time dependence is
in general quite difficult to be determined. On the other hand,
the diagonal contribution can often admit a simple relaxation
decay of the form:

Cr.a(t) = Cr,a(0)exp(—t/Ta)

where, for the cases reported above, the subindex o refer to
fluctuations of single carrier velocity (§v), carrier drift velocity
(6vy), carrier number (§u), carrier mobility (6u) as

(16)

2

Cr,5.(0) = (%) Nb6v;(0)? (17a)

eNT\2—

Cr50a(0) = (T) §v4(0)2 (17b)
—\ 2

Cr.6u(0) = (ej\g’d) 5u(0)2 (17¢)
— N\ 2

Cr,5,(0) = (e]LV;’”’) 5u(0)2 (17d)

with 7, and 7,4 momentum relaxation times, 7, the carrier
lifetime, 7, the scatterer lifetime. In addition, for the case of
Boltzmann statistics it is §v4(0)2 = 6v2/(N %) and 6u(0)? =
u/N. Thus for independent fluctuators the current spectral
density is expressed as a sum of Lorentzians:

Si(f) = 420,[,(0)

W (18)
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Fig. 1. Autocorrelation function of current fluctuations normalized to their
initial values in p-type Si at 77 K with N4 = 3 x 101° cm—3 at an electric
field of 2500 V/cm as obtained from the MC simulation. Full curve refers
to the longitudinal and dashed to the transverse component with respect to
the applied field.

The use of the voltage representation enables one to carry
out a spatial resolution-analysis which cannot be achieved
using the current noise operation since in that case the only
information given is the total current flowing in the outside
circuit (see (10)). To this end, the voltage spectral density
between the two contacts of a one-dimensional structure
Sv(0, L; f) calculated with the MC technique can be usefully
compared with the analytical expression given by the field-
impedance method [33], [34], as illustrated in the following.
By defining 6V;(f) as the voltage fluctuation on electrode
1 induced by an impressed harmonic current-density source
8j(r’, f) at point r’ as:

Vi) = [ Vo) S50 i (9)

Q
where () is the volume of the device and VZ the vector
Green fugction (impedanc/\e field) associated with the linear
problem Y'6V = —V-§j, Y’ being the small-signal admittance
operator per unit volume, the voltage spectral density for a
many terminals three-dimensional device with one-terminal

grounded is expressed through the impedance field-method as
[35]

Sawévj(f)=/dl‘1/ draV,, Z(vi 11 f)
Q Q

“Ssjr1ysjr2)(r1, r2; f)

Vo Z*(rj,ra; f) (20)

where Sg;s; is the spectrum of the noise source, and * denotes
complex conjugate.

The complexity of (20) is significantly reduced for a one-
dimensional structure of cross-sectional area A (ie., ¢ =
J and only diagonal terms are considered), with uncorre-
lated velocity-fluctuation sources (i.e., Ssjsj(z1,z2;f) =
e2n(z1)Su(z1; f)(1/A)8(x) — z3)), so that it simplifies to

L
S(0.L: f) = 24 /0 n(2)S(x: £)|Va2(a: ) 2de - 1)

where n(z) is the free carrier concentration and S, (z; f) the
local spectral density of a single-carrier velocity fluctuations.
We remark that one can define a local additive voltage-noise
source given by dSy (0, x; f)/dz. Both the voltage spectral
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Fig. 2. Longitudinal component of the current spectral-density as a function
of frequency in p-type Si at 77 K with N4 = 3 x 10!®> em™3 for E = 50
V/em, L =1.5x 1072 cm, and A = 3.6 x 10~3 cm?. Continuous, dashed,

dotted, and dot-dashed lines refer respectively to total, drift-velocity, GR, and
cross contributions.

density and its spatial derivative can be directly obtained from
MC simulations and used to identify the most noisy part of a
given device [29].

III. APPLICATIONS

In this Section we report results obtained by the MC
technique as applied to different systems with increasing
degree of complexity. The accuracy of the final values is
estimated to be at worst within 10%.

A. Material (Bulk)

The system we consider is p-type Si at 77 K and the results,
which are obtained by applying a constant electric field without
solving the Poisson equation, are shown in Figs. 1-4 [36],
[37]. The microscopic model [38] uses a single valence band
(the heavy one) warped with nonparabolic effects accounted
for. Acoustic, nonpolar optical and ionized impurity scatter-
ing mechanisms are considered. A nonradiative generation-
recombination (GR) mechanism assisted by acoustic phonons
is introduced [39]. Here we consider uncompensated samples
and neglect Poole—Frenkel effect. Time steps of 0.1 ps and 10
ps are employed for the short and the long time behavior of
the correlation functions, respectively. Because of the partial
freeze-out of holes, generation-recombination (GR) noise adds
to thermal noise. Fig. 1 shows the correlation function of the
longitudinal and transverse current at an intermediate field
strength of 2.5 kV/cm. We remark that the longitudinal com-
ponent evidences three time scales: momentum relaxation at
the shortest times, energy relaxation, which is responsible for
the minimum at intermediate times and carrier lifetime which
is responsible for the long time tail. The correlation function
finally vanishes on a nanosecond time scale. Conversely, the
transverse component exhibits only momentum relaxation.

Fig. 2 shows the numerical results of the longitudinal
current-spectral-density, here decomposed into the three con-
tributions corresponding to the right-hand-side terms of (14),
for a low field of 50 V/cm. As can be seen, at low frequencies
the GR and drift-velocity contributions are comparable and the
cross term, even if of weaker relevance, is easily detectable.
Both GR and cross contributions decay with a Lorentzian



1920

T T
[ ] experiments

total

~19

p-Si
T=77K
N3 x 10%m ™2

-20

log,[S, (A"/Hz)]

-21

3
log [E (V/cm)]

Fig. 3. Low-frequency longitudinal current spectral-density as a function
of the electric field in p-type Si at 77 K with L = 1.5 x 10~2 cm,
4 = 36 x 1073 cm? and Na4 = 3 x 10" cm™3. Symbols refer
to experiments obtained at the lowest frequency of 220 MHz, curves to
MC calculations [37]. Continuous, dashed, dotted, and dot-dashed lines
refer respectively to total, drift-velocity, GR, and cross- contributions. The
theoretical values obtained directly from the MC simulation have been scaled
by a factor (2 — w)~2 in order to account for a quadratic recombination
kinetics.
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Fig. 4. Longitudinal current spectral-density as a function of frequency in
p-type Si at 77 K with L = 1.5 x 1072 cm, A = 3.6 x 10~3 cm?,
and N4 = 3 x 101° cm™3 at different electric fields. Symbols refer to
experiments, curves to MC calculations [37]). (Reprinted from: T. Kuhn, L.
Reggiani, L. Varani, D. Gasquet, J. C. Vaissiere, and J. P. Nougier, “Field
dependent electronic noise of lightly doped p-type Si at 77 K,” Phys. Rev., vol.
B44, p. 1074, 1991.)

shape characterized by a comer frequency given by 1/(277,),
while the velocity contribution decays similarly but with a
corner frequency given by 1/(277,4).

Fig. 3 reports the relative contributions into which the longi-
tudinal spectral-density at low-frequency can be decomposed
as a function of the electric field. At the lowest fields, in agree-
ment with Nyquist relationship the drift-velocity contribution
is found to dominate. In the intermediate region of fields, both
GR and cross contributions increase, the former becoming
the leading term above 50 V/cm. We notice that the cross
term peaks in the region where GR and velocity contributions
become comparable and then decreases systematically. In the
whole range of fields theory well agrees with experiments.

To complete the theoretical interpretation, Fig. 4 reports the
full spectrum of the longitudinal current spectral-density for
three significative fields. The calculations well reproduce the
main features of the experiments within a factor 2 at worst,
thus providing a satisfactory interpretation.

We remark that to calculate current fluctuations in the ma-
terial we have performed only a MC simulation in momentum
space. As a consequence, no direct information is available
on voltage fluctuations. In order to obtain the voltage spectral
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c(1)/c(0)

Time (ps)

Fig. 5. Autocorrelation functions of current fluctuations for the different
applied voltages reported. Calculations refers to a Si homogeneous structure
with n = 107 cm™3, L = 0.6 um, at T = 300 K. (Reprinted from: L.
Varani, T. Kuhn, L. Reggiani, and Y. Perles, “Current and number fluctuations
in submicron ntnnt structures,” Solid State Electron., vol. 36, p.251,1993.)

density and/or include the fluctuations of the self-consistent
electric field the geometry of the sample in real space must be
fixed a priori. This leads us to the next section.

B. Resistor

The system we consider is a space-homogenous submicron
Si resistor of length L = 0.6 um with a donor concentration of
1017 cm~3 at 300 K [40]. The silicon model used [41] takes
into account an isotropic nonparabolic band structure, which
is appropriate when the electric field is oriented along the
{(111) crystallographic direction, and scattering mechanisms
with acoustic and intervalley phonons. The total length of the
device is equally divided into cells (typically of the order of
100 cells) and initially each cell is taken to be electrically
neutral. A time step of 1 fs has been employed. Fig. 5 shows
the current correlation function calculated at increasing applied
voltages where its faster decay is associated with the onset
of hot-carrier conditions. The presence of a negative part in
C1(t) is attributed to the coupling between energy and velocity
relaxation processes [36].

Figs. 6 and 7 show the voltage correlation functions and
the corresponding spectral densities for the same resistor.
Here, plasma and differential dielectric-relaxation times are
responsible for the oscillatory and dumping behaviors of
the correlation functions reported in Fig. 6. At increasing
applied voltages the subohmic behavior of the current-voltage
characteristics implies a significant increase of the dielectric
relaxation time which, by becoming longer than the plasma
time, washes out the oscillations.

The next step is now to introduce a spatial inhomogeneity
in the structure. To this end, we devote the next section to the
study of fluctuations in a n*nn* diode, which represents the
prototype of most semiconductor devices and can be easily
simulated by the MC technique.

C. ntnn™ Structures

The system we consider is a submicron Si n*tnn™ struc-
ture at 300 K with two abrupt homojunctions along the
z-direction [40]. The lengths of the three regions are indicated,
respectively, as Li, L and L. The microscopic model is the
same used in Section III-B. A time step of 1 fs has been
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Fig. 6. Autocorrelation function of voltage fluctuations in the same structure
and conditions as Fig. 5.
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Fig. 7. Voltage spectral density corresponding to Fig. 6.
1.0 " Silicon 4
I T=300K
. U=0V
0.5! total 1
]' ----- diagonal

off-diagonal

€ () (10° A /em’)

-0.51 o . on =4x10%m"
0. 0.5 1.0
Time (ps)

Fig. 8. Autocorrelation function of current-density fluctuations at equilibrium
for a Si n*nn™ structure at T = 300 K with nt = 4 x 1017 cm™~3,
n = 4 x 10 cm™3, and length 0.20 — 0.20 — 0.20 pm, respectively.
Continuous, dashed and dotted curves refer respectively to the total, diagonal,
and off-diagonal terms of (13) in text.

employed. Fig. 8 shows the current correlation function for a
structure with I = Ly = Ly =0.2 um. According to (13), the
total correlation function can be decomposed as the sum of a
diagonal and off-diagonal contribution. The former, by giving
the autocorrelation of the single particle velocity, is responsible
for the exponential decay. The latter, being associated with
the long-range Coulomb interaction, is responsible for an
oscillatory behavior related to the plasma frequency of the
nt and n regions.

Fig. 9 shows a 3-D plot of the voltage correlation-function
Cy+(0.z; t) for different sampling points of the same structure
withn = 10'® cm~=3 and nt = 10'7 cm~3. The time evolution
of Cy(0.z;t) depends on the contribution to the voltage
fluctuations which comes from each region in the structure
through the value of its resistance and doping. In this way
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Fig. 9. Autocorrelation function of voltage fluctuations as a function of
time and position at equilibrium for a Si nTnn™ structure at T = 300
K with n™ = 10'" em™3, n = 10'® cm™3, and length 0.20 — 0.20 — 0.20
pm, respectively. (Reprinted from: T. Gonzalez, D. Pardo, L. Varani, and L.
Reggiani, “Spatial analysis of electronic noise in submicron semiconductor
structures,” Appl. Phys. Lett., vol. 63, p. 84, 1993.)

we observe that, through the plasma time, the n* regions are
responsible for an oscillatory behavior that at increasing times
is suppressed by dielectric relaxation {29]. In the n region
the evolution is mainly determined by dielectric relaxation
through a contribution which decreases exponentially with
time. It is remarkable the very good agreement found for
Cv(0,2;0) = KpTz/(egerA) [12].

Fig. 10 shows the voltage spectral-density corresponding to
Fig. 9. Here, the different influence of each region in the struc-
ture is clearly emphasized. At low frequencies, most of the
noise is originated in the n region due to its larger resistance.
It is interesting to notice that the presence of the self-consistent
field in the homojunctions produces some smoothing from the
three-slope linear behavior which is expected for a simple
series-resistance model Sy (0,z;0) = 4KgTR(0,x), where
R(0,z) is the ohmic resistance of the structure up to the
point . When going to higher frequencies, the contribution
to the spectral density coming from the n region decreases,
while that of the n* regions increases, reaching its maximum
value for the associated plasma frequency (1275 GHz). At this
frequency it can be clearly observed that the only contribution
to the spectral density comes from the n* regions.

Fig. 11 shows the voltage spectral-density for a GaAs
ntnnt structure with nt = 1017 ecm™3, n = 104 ecm—3
and length 0.15-0.25-0.50 pm, at 7' = 300 K with an average
applied voltage of 0.45 V [29]. The GaAs model [42] takes into
account the first conduction band within a three-valley model
(T, L, X) all isotropic and nonparabolic. Intravalley acoustic
and polar-optical, as well as intervalley scattering between
cach couple of valley is considered. Analogously to the case
of Si, the structure exhibits a noticeable peak at the plasma
frequency corresponding to the n™ region. Furthermore, in the
lowest frequency region the contribution of the drain region
to noise is found to be of great importance. Indeed, here the
presence of carriers in the higher satellite valleys implies a
deeper penetration of hot carriers in the drain before they can
thermalize. Therefore, this region becomes highly resistive and
thus highly noisy. We remark the evidence of a minor peak
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Fig. 10. Spectral density of voltage fluctuations as a function of frequency
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Fig. 11. Spectral density of voltage fluctuations as a function of fre-
quency and position in a GaAs ntnn™ structure for an average voltage
AVI(L)y=045VatT = 300K with vt = 1017 cm™3, » = 10** em—3,
and length 0.15—0.25—0.50 pm, respectively. (Reprinted from: T. Gonzalez,
D. Pardo, L. Varani, and L. Reggiani, “Spatial analysis of electronic noise in
submicron semiconductor structures,” Appl. Phys. Lett., vol. 63, p. 84, 1993.)

at about 500 GHz, the origin of which is attributed to the
presence of I — L intervalley mechanism in the vicinity of the
second homojunction.

A further increase in the complexity of the studied system
leads to substitute one of nt regions of the ntnn* diode with
a metal contact, thus obtaining a so called Schottky-diode. As
a matter of fact, the asymmetry of this structure and its strong
deviation from the Ohmic behavior are known to introduce

new peculiarities in the noise spectra. This is the subject of
the next section.

D. Schottky Diode

The system we consider is a one-dimensional GaAs n* —n
-metal structure at 300 K [43]. The microscopic model is the
same already used in Section ITI-C The structure is divided
into equal cells of length 10 nm. Time steps of 10 fs and
2.5 fs are employed for the current and the voltage noise,
respectively. The doping of the nt region is 1017 cm™3 and
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Fig. 12. Current spectral-density as a function of frequency for a GaAs
Schottky barrier diode at 7 = 300 K with n = 1016 cm~3, ot = 1017
cm™3 and length of each region of 0.35 um. Different curves refer to the
reported applied voltages.

it is 0.35 pm long. At its left side, where the carriers are
injected into the device, an ohmic contact is simulated, and the
number of electrons considered is updated. Charge neutrality
is assured at each time step in the cell closest to the contact
by injecting carriers with a thermal distribution at the lattice
temperature. The n region is 0.35 pm long and its doping is
1016 cm—3. At its end it is the Schottky barrier with the metal
contact acting as a perfect absorbing boundary, that is, all the
carriers reaching the metal leave the device and no carrier is
injected from the metal into the semiconductor. The height
of the barrier considered in the simulation is 0.735 V, which
leads to an effective built-in voltage between the n region
of the semiconductor and the metal of 0.640 V. The cross-
sectional area adopted for the device is 2 x 10~% cm?, which
means an average number of simulated carriers around 7600
depending on the bias.

Fig. 12 shows Sr(f) at increasing applied voltages where
the current-voltage characteristic exhibits an exponential be-
havior. The complexity of the spectrum is understood on
the basis of a strong coupling between fluctuations in carrier
velocity and the self-consistent electric field. Two peaks are
observed, one in the region below 10° GHz and another at
about 2.2 x 103 GHz. The first is attributed to carriers that have
insufficient kinetic energy to surpass the barrier and return to
the neutral semiconductor region, as explained in [44]. The
second originates from the coupling between fluctuations in
carrier velocity and in the self-consistent field due to the
inhomogeneity introduced by the nt — n homojunction [43].

By reporting Sr(0) as a function of the current, Fig.
13 enables an analysis of noise sources to be carried out.
Accordingly, at low currents shot-noise [19] is found to be
dominant, so that S;(0) exhibits a 2e] dependence. At higher
currents, Sr(0) approaches a thermal noise behavior S;(0) =
4KpT/Rs, R, being the differential series resistance, and
finally exhibits a steep increase associated with hot-carrier
effects. By considering the first two behaviors, S;(0) can be
expressed as [44]:

2eIR? + 4KpTR,

where R; is the differential resistance of the junction space-
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Fig. 14.  Low-frequency value of the spectral density of voltage fluctuations
as a function of position and mean voltage in the same structure as Fig. 12.

charge region. In Fig. 13 the results of the simulation are
favorably compared with this analytical model and the two
limit behaviors. Fig. 13 also reports the values obtained for
S7(0) when a static Poisson solver is considered in the
simulation by using the field profile corresponding to the
stationary situation. While the static characteristics are checked
to remain the same, the results for Sy(0) differ considerably,
and no transition from a shot-noise behavior to a thermal-
noise behavior is noticed. These results prove the essential
role played by the coupling between fluctuations in carrier
velocity and self-consistent electric field in determining the
noise spectra.

Fig. 14 shows a spatial analysis of the low-frequency value
of the voltage spectral density. For voltages lower than 0.640
V shot-noise is dominant, and most of the noise arises in the
depletion region close to the barrier. At increasing voltages,
thermal noise associated with the series resistance prevails,
and the noise becomes spatially more distributed, mainly
originating from the n region of the device. Finally, at the
highest voltages, the presence of hot carriers and intervalley
mechanisms in the n region leads to the appearance of
an excess noise. In this range, electrons become hot after
traveling some distance in the n region. This is the reason
why Sy-(0. x;0) takes these higher values near the end of the
n region.
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Fig. 15 reports the equivalent noise temperature at zero
frequency 7,, with which 7" must be replaced for the two sides
of (4), (5) to be equal when they are independently calculated
[15]. For low currents, corresponding to the exponential region
of the current-voltage characteristics, T, ~T'/2, thus revealing
a full shot-noise behavior. As the current increases, the effect
of the thermal noise in the series resistance becomes important
and T, approaches T to finally cross over because of the onset
of hot-carrier effects. This behavior of the noise temperature
agrees favorably with available experiments [45]-{47]. We
remark the essential role of the dynamic Poisson solver which
substantially suppresses the noise temperature.

IV. CONCLUSION

We have presented a theoretical simulation of electronic
noise in semiconductor materials and two-terminal devices.
Calculations are based on the Monte Carlo technique which,
to include fluctuations of the self-consistent electric field,
is coupled with a Poisson solver. Both current and voltage
correlation functions and their respective spectral densities are
investigated. The current representation, by allowing a decom-
position in terms of different noise contributions, is found to
provide useful information on the nature of the noise sources.
The voltage representation, by allowing a spatial analysis to
be carried out, is found to provide a local information on the
strength of the noise sources. For the case of homogeneous
structures, the presence of hot-carrier conditions is found
to couple number, velocity and energy fluctuations. When
considering nonhomogeneous structures, the coupling between
fluctuations in carrier velocity and self-consistent electric
field is proven to essentially modify the noise-spectrum. In
particular, the Schottky-diode is analyzed within a microscopic
model which naturally describes most of the salient features
of its noise spectrum without invoking phenomenological
shot and thermal noise sources. Finally, we believe that the
generality of the approach here proposed, besides providing
a rigorous basis for the interpretation of noise-spectroscopy
measurements, still leaves wide possibilities of implementation
for the analysis of more complicated systems.
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