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It is shown that quantum phenomena in electron devices, such as tunneling of electrons, can be modeled using
Bohm trajectories. Fowler-Nordheim tunneling in thin-oxide MOS structures and resonant tunneling in double

barrier diodes are considered.
1.INTRODUCTION

The tunneling of electrons is of increasing interest
in silicon devices. Leakage currents, oxide
degradation, dielectric breakdown, hot electron
effects, are examples of phenomena which are related
to tunneling in MOSFETSs. This quantum-mechanical
(QM) phenomenon is basic to the operation of devices
such as floating gate EEPROMs. Also, new tunneling-
based silicon devices are being proposed as
alternatives to agressively scaled down MOS
transistors [1].

In conventional MOS devices, tunneling has
usually been modeled using the WKB approximation.
In very thin insulator structures numerical solution of
the stationary Schrodinger equation has also been
undertaken to reveal aspects which cannot be
considered within the former approximation. In
general, the results are in quantitative agreement with
experiments if one considers the limitations derived
from the exponential dependences of the tunneling
probability on barrier height and barrier thickness. In
the case of tunneling devices such as the resonant
tunneling diode (RTD) more accurate simulations
have been performed and two main approaches have
been considered: the solution of the effective-mass
(Schrédinger) equation [2], and the integration of the
Liouville equation to obtain the Wigner distribution
function [3]. In both cases, self-consistency with the
Poisson equation has been accounted for with
different degrees of approximation. The first approach
assumes full wave-coherence (extended scattering
states), and has the severe limitation of using the
equilibrium distributions of carriers at the contacts
when considering the occupation of these states. The
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second approach is in principle free of this limitation
because scattering interactions can be introduced into
the Liouville equation, and the contact distributions
are only assumed as boundary conditions. However,
the extensive computation burden required by this
approach considerably limits the size of the simulation
box so that these boundary conditions can be far from
being realistic.

A reliable approach for the introduction of
tunneling into multidimensional device simulators is
still missing. In this regard, the coupling of a QM
treatment of tunneling with the semi-classical Monte
Carlo (MC) simulation technique would be very
convenient because it would allow the simultaneous
consideration of scattering and QM coherence effects.
For this purpose we are considering two alternatives,
i.e. Wigner trajectories [4] and Bohm QM trajectories
[5]. In this work we deal with Bohm trajectories in
two cases which are interesting for device
applications: (1) Fowler-Nordheim (FN) injection in
Si/Si0,/Si structure; and (2) resonant tunneling in
double-barrier diodes.

2. BOHM’S INTERPRETATION.

Let us briefly review the basics of Bohm’s
interpretation for non-relativistic particles [6]. The
wavefunction associated to a particle can always be
expressed as

w(x,t) = R(x,t)exp(i S(;’t)) M

with R(x,t)and S(x,)being real functions. Thus
the complex time-dependent Schriodinger equation
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(TDSE) is found to be equivalent to two real
equations: the continuity equation for the presence

probability density P(x,t) = R (x,t) ; and another
equation which can be interpreted as a modified
Hamilton-Jacobi equation. In this scheme, the particle
velocity is directly given by
v(x,t) = (1/ m)(&S(x,t)/ &), and the classical
potential energy ¥ (x,t) is augmented by a new
term, ((x,!), which is interpreted as a quantum
potential:

__B 1 PR @
QAx1)= 2mR(x,1) &°

This quantum potential introduces non-local features
and modifies the trajectories so that the measurable
results of the standard interpretation of Quantum
Mechanics are perfectly reproduced. Assuming an
initial wavepacket ‘¥'(x,0), the particle trajectory is
causally determined at all instants of time, provided
that the initial position x, is known. However, because
of the limitations of the uncertainty principle, the
initial position is not perfectly determined within the
initial wavepacket, and the physical quantities must be
obtained by averaging over all the possible trajectories
weighted by P(x,,0).

3. NUMERICAL PROCEDURE.

Regarding to the choice of the initial
wavefunction, two alternatives have been considered
in the literature; stationary scattering states, and
localized time-dependent wavepackets. However,
since Bohm ftrajectories associated to the scattering
eigenstates of the effective-mass hamiltonian give
non-consistent results (this failure is not due to
Bohm’s interpretation but to the nature of the
scattering  states  themselves), time-dependent
wavepackets are required. Our procedure is as
follows: (i) we define a gaussian wavepacket located
at t=0 in the emitter electrode, far enough from the
barriers so that the potential is flat and the probability
presence in the barrier region negligible; (i) we
integrate the hamiltonian eigenstates following the
method of Vasell et al. [2]; (iii) we project the initial
wavefunction onto the obtained basis to calculate

W(x,f)by superposition; and (iv) finally we
integrate Bohm trajectories. In step (iv), we first
calculate R(x,t) and S(x,t) from the wavefunction, we
calculate the velocity by dereivation of S(x,t), and we
spatially integrate it to obtain the trajectory.

4. RESULTS.

4,1 Fowler-Nordheim tunneling through a thin
MOS capacitor.

Consider first a silicon MOS structure with a 4
nm oxide and highly doped electrodes (no band
bending effects).
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Figure 1. Transmission coefficient for a typical MOS
structure with an applied bias of 9 V and oxide
thickness of 4 nm in a (100) interface.

In Fig. 1 we show the transmission coefficient as a
function of energy for the two sets of silicon valleys
(m"=0.19m,, and m"=0.91m,) in a (100) interface. We
show the results for energy eigenstates and gaussian
wavepackets with spatial standard deviation of s,=7
nm. The results justify this selection of s, because the
transmission coefficient is very similar to that of the
scattering  eigenstates ( spatially more localized
packets are too de-localized in energy so that the
relevant energy dependences are washed-out). The
oscillations are due to reflections at the oxide/anode
interface [7] and, as expected, are also apparent in the
simulated FN plot (Fig. 2). Since the injection is
controlled by the m"=0.19m, valley, the following
results correspond to this case.
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Figure 2. Simulated Fowler-Nordheim plot associated
to the structure of fig 1.
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Figure 3. Bohm trajectories for an initial gaussian
wave-packet with a central energy of 0.25 eV and a
saptial dispersion of 7 nm impinging on the MOS
structure (dashed lines) of fig 1.

Fig. 3 shows selected Bohm trajectories for one of the
transmission maxima. Most of the trajectories are
reflected (without ever reaching the barrier) and only
those of the very front of the packet (Bohm
trajectories do not cross) are transmitted [8]. No
qualitative differences are observed in the trajectories
of the transmission minima. The results are consistent
because the ensemble of Bohm trajectories perfectly
reproduce the evolution of the wavefunction obtained
by integration of the time-dependent Schrodinger
equation (TDSE). In particular, the transmission
coefficient has been calculated by averaging Bohm
trajectories with a precision better than 1% in both
cases.

4.2 Double barrier resonant tunneling diodes.

RTDs are most adequate to show the strengths
of the Bohm’s approach because the tunneling

phenomenoly is richer than in single barrier
structures. Fig. 4 shows Bohm trajectories
corresponding to the ground resonance of a double
barrier structure typical of AsGa/AsGaAl system. No
oscillations are observed and this seems to contradict
the usual intuitive interpretation of resonances.
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Figure 4. Bohm trajectories associated to an initial

gaussian wave-packet (central energy of 0.22 eV and

spatial dispersion of 10 nm) incident on a double

barrier (dashed lines).

However, the wavefunction solution of the TDSE
does not show any oscillation either. This is due to the
fact that the local density of states in the well is very
narrow. If the well width is increased, the peaks of the
density of states become more closely spaced, and the
wavefunction shows oscillations.
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Figure 5. Bohm trajectories associated to an initial
gaussian wave-packet (central energy of 0.16 eV and
spatial dispersion of 10 nm) impinging on a double
barrier (dashed lines) with a wider well.
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As expected, Bohm trajectories also bounce between
the barriers as shown in Fig. 5 for a 2nm/18nm/2nm
structure. The distribution of tunneling times (this
quantity is perfectly defined within Bohm's
interpretation) also shows periodic bumps according
to the sequential attemps to cross the second barrier
(Fig. 6) [9].
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Figure 6. Transit time distribution obtained. from
25000 Bohm trajectories for the wave-paket an
potential profile of fig S.

5. Discussion.

We have shown that the tunneling of
wavepackets can be described by Bohm trajectories
and that, as expected, the obtained results are fully
equivalent to those obtained from the wavefunction
solution of the TDSE. However, in our opinion, the
main interest of this approach is the possibility of
using Bohm trajectories for the extension of the MC
technique to tunneling devices.
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Figure 7. Simulated I-V characteristic of a RTD.

In this regard, we have already developed a
preliminary MC simulator (without scattering in the
QM region) based on the coupling of classical and
Bohm trajectories. The simulator cannot be described
here in detail, but we want to show the main results
obtained with this tool, i.e. the self-consistent I-V
characteristic (Fig. 7); and the position-momentum
distribution function at the resonance which clearly
shows the tunneling ridge (Fig. 8).

Figure 8. Particle position-distribution function at 0.29
V . Notice the tunneling ridge indicated by an arrow.

These results demonstrate that such simulations are
possible and show their great potentiality for the
accurate modeling of tunneling in electron devices.
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