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Abstract. We propose a novel numerical procedure to calculate the hot-carrier
thermal conductivity in bulk semiconductors. The method is based on combining
Monte Carlo and hydrodynamic simulations of carrier transport in submicron
inhomogeneous structures. Application to a Si n+nn+ structure indicates a decrease
over one order of magnitude of the thermal conductivity of electrons at electric
fields over 10 kV cm−1, in close agreement with recent results obtained within the
correlation-function formalism.

The determination of hot-carrier thermal conductivity is
an important issue in the modelling of submicron semi-
conductor devices. For this purpose, a phenomenological
generalization of the Wiedemann–Franz law based on an
electron temperature model and an energy-dependent re-
laxation time is usually introduced within hydrodynamic
(HD) approaches [1–5]. However, the physical plausibility
of such a phenomenological approach is questionable and
the field dependence of thermal conductivity remains an
open problem. Some authors [6, 7] have recently proposed
a generalization of the definition of the carrier static ther-
mal conductivityκ(E) along the direction of the electric
field E based on the correlation-function formalism which
reads [7]

κ(E) = kBnµ
2
d(E)

e2

I11(E)I22(E)− I12(E)I21(E)

I 3
11(E)

(1)

Iνµ(E) =
∫ ∞

0
δjν(0)δjµ(t) dt ν, µ ≡ 1, 2. (2)

HerekB is the Boltzmann constant,e the electron charge,n
the carrier concentration,j1 = v(k), j2 = v(k)ε(k) (v(k)
and v(k)ε(k) being the carrier velocity and energy flux
times unit volume along the field direction as functions of
wavevectork, µd(E) the differential mobility andδjµ(t)

the fluctuation ofjµ(t) around its average value). In
equation (2) ergodicity is assumed so that the bar denotes
time average. When applied to the case of n-Si at 300 K,
the above formalism predicts forκ(E) a dramatic decrease
over one order of magnitude under hot-carrier conditions.

In the absence of direct measurements ofκ(E), the
aim of this letter is to propose a numerical procedure
able to evaluate this quantity from the analysis of
its effects on the transport characteristics of spatially
inhomogeneous structures. The comparison with the
results which are independently obtained by equations
(1) and (2) is taken as validation of the proposed
procedure and direct confirmation of the physical reliability
of calculations performed within the correlation-function
formalism. For this purpose we consider a one-dimensional
n+nn+ structure where the doping profile varies along the
x direction. Under stationary conditions, velocity and
energy conservation equations within the single-electron
gas approximation take the form [8]

em−1E − vνv − v ∂v
∂x
− 1

n

∂

∂x
[n〈(δv)2〉] = 0 (3)

evE − (ε − εth)νε − v ∂ε
∂x
− 1

n

∂

∂x
(n〈δvδε〉) = 0 (4)
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wheren, v, ε andE are, respectively, the profiles along
the x direction of carrier concentration, average velocity,
average energy and electric field;εth is the average carrier
energy at thermal equilibrium,m−1 the average reciprocal
effective mass,νv andνε the velocity and energy relaxation
rates; 〈(δv)2〉 and 〈δv δε〉 are the velocity variance and
velocity-energy covariance, respectively. While the field
(or energy) dependence ofm−1, νv andνε can be calculated
from Monte Carlo (MC) simulations of the bulk material
[8, 9], 〈(δv)2〉 and 〈δv δε〉 are higher-order moments of
the corresponding conservation equation which must be
assigned independently and constitute the closure condition
of equations (3) and (4). A reasonable closure condition
is the use of the approximations〈(δv)2〉 ' 〈(δv)2〉0 and
〈δv δε〉 ' 〈δv δε〉0 where 〈 〉0 indicates an average for
the the bulk material at the given applied field (or carrier
average energy) and thus directly obtainable from MC
simulations [8, 9]. While〈(δv)2〉0 can be well justified [9],
〈δv δε〉0 does not account appropriately for energy-gradient
effects [9]. These last are usually accounted for by adding
to 〈δv δε〉0 an extra term such that〈δv δε〉 is written as [1]

〈δv δε〉 = 〈δv δε〉0− κε(E)
n

∂ε

∂x
(5)

where κε(E) = (2/3kB)κ(E) is a carrier thermal
conductivity independent of lattice heating at the given
electric field measured in units of diffusivity per unit
volume. Due to this phenomenological incorporation, there
is no way to obtain an independent calculation ofκ(E)
under hot-carrier conditions. Therefore, in recent years
several authors [1–5] have developed different approaches
to provide values ofκ(E) in terms of a phenomenological
generalization of the Wiedemann–Franz law.

To check the reliability of the values ofκ(E) so
obtained and, hence, the validity of the related assumptions,
we propose the following procedure which is here applied
to the case of electrons in Si at 300 K. The spatial
profiles of 〈δv δε〉 in a submicron n+nn+ structure are
calculated with MC simulations [10, 11]. Near the anode
homojunction a local spike of〈δv δε〉 associated with
the strong gradient of the carrier mean energy can be
related toκ(E) via the decomposition given in equation
(5). To this purpose, by using the HD approach of
equations (3) and (4) with the energy-dependent parameters
obtained from the MC approach, but neglecting thermal
conductivity effects, we calculate the energy profile of the
carriers in the structure. Then, the corresponding〈δvδε0〉
profile is obtained. Figures 1 and 2 report the profiles
of the 〈δv δε〉 and 〈δv δε〉0 calculated with the MC and
HD simulations, respectively. From figures 1 and 2 we
conclude that the presence of the local spike in〈δv δε〉 at
the n+n homojunction is associated with the contribution
of κ(E) which, in turn, can be quantitatively estimated
using equation (5). There,〈δv δε〉 and (1/n)∂ε/∂x are
obtained from MC and〈δv δε〉0 from the corresponding
HD simulation.

Figure 3 reports a typical result of the present procedure
for an applied voltage of 1.5 V. We notice that the
region near the anode nn+ junction, where ∂ε/∂x is
maximum, is the most sensitive to the effects of thermal

Figure 1. Spatial dependence of the covariance of the
velocity–energy fluctuations calculated with a MC approach
for a 0.1–0.4–0.1 µm n+nn+ Si structure with doping levels
n = 2× 1015 cm−3 and n+ = 5× 1017 cm−3 at T = 300 K
and applied voltages of 0.5, 1.0, 1.5 and 2.0 V. Results
refer to an electric field applied along the 〈111〉
crystallographic direction.

Figure 2. Spatial dependence of the covariance of the
velocity–energy fluctuations calculated with a HD approach
which neglects thermal conductivity effects for the same
structure and conditions as figure 1.

conductivity, thus allowing one to pick up a local value
of κ(E). Accordingly, the value of the electric field at
this point is associated with the value ofκ(E) and the
field dependence is obtained by repeating the procedure
at various applied voltages. The comparison between the
values ofκ(E) obtained from equations (1) and (2) and
those calculated from the above simulative procedure is
reported in figure 4. Here we show results for the two
orientations 〈100〉 and 〈111〉 of the electric field with
respect to the crystallographic directions where anisotropic
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Figure 3. Spatial dependence of the covariance of the
velocity–energy fluctuations calculated with HD (〈δv δε〉0),
MC (〈δv δε〉) and HD plus thermal-conductivity corrections.
Calculations refer to the same structure and conditions as
figures 1 and 2 and an applied voltage of 1.5 V.

characteristics, associated with the many-valley conduction
band of Si, are expected. By requiring a strong energy
gradient, the present procedure enables us to obtain values
of κ(E) only in the high field region above 10 kV cm−1.
Here, calculations show evidence of a dramatic decrease
over one order of magnitude ofκ(E), which is found
to compete with the sharp increase in the local energy
gradient. Furthermore, anisotropic effects are found to play
a minor role. At the highest fields the correlation function
formalism predicts a negligible value ofκ(E) since here the
drift velocity saturates. The non-smoothing of the curves
in figure 4 illustrates the numerical uncertainty, which we
estimate to be within a factor of two at worst. Overall
the agreement is considered to be satisfactory and such as
to validate the numerical procedure suggested here and to
confirm the theoretical results predicted by the correlation-
function formalism.
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Figure 4. Longitudinal thermal conductivity per unit
concentration of electrons in Si at T = 300 K as a function
of electric-field strength. Curves refer to calculations
performed for electrons in bulk Si using the correlation
function formalism; points represent results obtained with
the mixed MC–HD calculations applied to an n+nn+

structure and using equation (5). The full curve and open
circles, and the dashed curve and full circles refer to the
electric field applied along the 〈111〉 and 〈100〉
crystallographic directions, respectively.
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