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It is shown that the spectral density of the diffusion noise source can be described in terms of accelerations
caused by single scattering events. Within a hydrodynamic approach a response-function formalism for the
spectral density of voltage fluctuations in semiconductor structures is developed on the basis of a generalized
impedance field method. The formalism is validated by comparison with Monte Carlo simulationtypé
GaAs structured.S0163-18208)01316-3

In its most advanced form, the impedance figl&) direction consists of a stochastic sequence of accelerations
method expresses the spectral density of voltage fluctuatioreyt). The source of accelerations is twofold: One comes
between the terminals of a one-port devigg w) in terms of ~ from the electric fieldE and the other from the stochastic
spatial convolution between the local FZ(Xx,w) and the impulsive forces associated with single scattering events.
two-point spectral density of the current-density fluctuationsThese impulsive forces are proportionalde;5(t—t;) and
Sjj(x,x",0) treated as the macroscopic source ofare associated with instantaneous changes of the electron ve-
fluctuations:™> locity at a given time momertt=t; by a value ofAv;=uv;

—pi, Uai @nduy; indicating the electron velocity just after
L L and before theth scattering event. Under stationary condi-
Sy(w)= Jo dXJO dx'VZ(x,®)S;;(x,x", @) VZ* (X', @), tions in the bulk, the average value aft) is equal to zero
(1) for both the ensemble and time averaging along a sufficiently
long trajectory of a single electron due to the ergodicity of

where the above equation is specialized to a one-dimension#iie process. This allows us to consider the time dependence
geometry withL being the length of the device. The main of the sequence of accelerations of a single electron during
drawback of such an approach is that the spectral density dhe time interval Gst<T given by
current fluctuations does not represent the proper micro-
scopic noise source since it already contains the dynamic
contribution of carriers while moving between scattering
events. This complicates noise calculations of current submi-
crometer devices where the short time and space scales r¢here N is the number of scattering events durifigand
quire one to account for the spatiotemporal correlation of than(t) is the electron effective mass that can depend on time
current-density fluctuations, which can only be evaluated bylue to nonparabolicity, intervalley transitions, etc. The elec-
means of the direct Monte CarldMC) simulation of the tric field E is considered to be constant in time. In the gen-
device being testet In contrast, for the Markovian pro- eral case the autocorrelation function of electron accelera-
cesses considered here, the microscopic noise sources are tloms C,(s), which in accordance with Eq2) determines
scattering events themselves, which are uncorrelated in bothe random walk of a carrier, can be decomposed into two
space and time. A formal expression f8(w) able to in-  parts as
clude the proper Markovian noise sources and to attribute the

N
a(t)=eEm Y(t)+ >, Av;8(t—t)), 2
i=1

full dynamics to an equivalent IF rigorously derived within a Ca(s)=a(t)a(t+s)!'=C3(s)+Ck(s). 3)
h iqHD) th I h - )
b)égrkc?dynamlc( ) theory would overcome the above draw The first part

The aim of this paper is to address this issue. For this sake 1 N
let us consider first the nature of fluctuation sources. In a CS(s)== 2 (Av;)28(s) (4
microscopic description, the electron motion along the field a i=1 !
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is the short-time correlationof the system and is given by 2 ] T .
the autocorrelation of acceleration fluctuations at the time
moments of scattering events. Let us stress D) is

proportional to as(s) function, thus reflecting the Markov- ‘E
ian nature of the scattering process. 5
The second part 2
2
13 =
C;(S):T; AviAv;8(s—(t—t))) 5
6} .
eE N 1 1 ! I 1
+?Zl Avi[m™(ti—s)+m™~*(t;+s)] o 05 1 15 2
s (ps)
(ee? (7. . . .
+ T J;) m~*(t)m~ ~(t+s)dt (5) FIG. 1. Long-time part of the correlation function of accelera-

tion fluctuations(curve 1) together with its componenfgsurves 2,

3, and 4 corresponding to the first, second, and third terms on the
right-side of Eq.(5)]. Calculations are performed with a MC simu-
tI'ation of bulk n-type GaAs aE=5 kV/cm andT=300 K.

is the long-time correlationof the system and consists of
three terms. The first, second, and third terms on the righ
hand side of Eq(5) correspond, respectively, to the cross
correlation of accelerations caused by scattering events, th
cross correlation between scattering accelerations and the e
ternal fieldE, and the autocorrelation of the external fi&ld

To illustrate the main features @f,(s) and the transition
from the stochastic description to that based on the HD a
proach we consider the following simple mod@): Scatter-
ing events are fully randomizing, so that,;)=0; (ii) scat-
tering events occur with a constant rate 1/7; and(iii ) the
effective mass is constant in time. In the framework of this
model, simple analytical expressions fo5(s) and its spec-

t thermal equilibrium, by substituting(Av?)=2(v?)
=2kBT70/m into Eqg.(8) one obtains the standard relation for
S,(w).

_As an application, we have performed MC simulations for
the case of hot electrons in bulln-type GaAs at
E=5kV/cm andT=300 K. Figures 1 and 2 illustrate the
numerical results of the simulations for the various parts of
the correlation functiorC,(s) (Fig. 1) and of the associated
spectral densityS,(f ) (Fig. 2). Figure 1 reports the three
é‘omponenticurves 2-4, respectivelypf the long-time part

of C4(s) and their sum(curve ). The short-time part of
C.(s), being proportional to & function, is omitted in Fig.

1, but the corresponding spectral density, which is indepen-
dent of frequency, is reported in Fig. 2 by curve 2 together
with the long-time correlated patturve 3 and their sum
(curve 1. It can be observed that the results of the numerical

long-time correlatiorisee Eq(5)] reduce to constant values
respectively given by-2(eE/m)? and @E/m)2. They ex-
actly compensate for the long-time limig—o value
(eE/m)? of the first term, so that the total correlation func-
tion of acceleration fluctuations takes the form

B calculations are in full agreement with what is predicted by
1 exp{ — —) the simple model.
C.(s)== (AvD)| S(s)— , 6 The representation of the spectral density of velocity fluc-
a(s) T (Avi)| os) 2 © tuations in terms of Eq(8) is identical to the description of

where the first and second terms in the square brackets cor-
respond to the short- and long-time parts of the correlation
function of acceleration fluctuations. As it follows from Eq.

4 Ty RN | et

(6), despite the fact that scattering events are uncorrelated, i
the accelerations caused by them have a long-time correla- %
tion that compensates for any initial fluctuation, thus provid- s
ing the relaxation of the system. The spectral density of ac- =
celerations is given by =
) a

S PATA R ! 7

()= “Tren? Y

When w—0, the spectral density of the short-time part of
Ca(s) is fully compensated for by the spectral density of its f (THz)
long-time part, so thaB,(w)~ w?. The latter is responsible
for the finite value taken by the spectral density of velocity

. ) Cu
fluctuations atw—0:

FIG. 2. Spectral density of the correlation functions in Fig. 1.
rve 1 refers to the total spectrum and curves 2 and 3 refer to its
short- and long-time correlated parts, respectively. Curve 4 refers to
S.() the spectral density of acceleration fluctuations calculated as
al @ 2 T S,(w)=w?S,(w) from the spectral density of velocity fluctuations
w)= =2(Av; : 8 2 - -
S(@) 2 (AvD) 1+ (w7)? ® obtained by MC simulation.
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fluctuations in the framework of the Langevin approach for
velocity fluctuations described by

E51)=—y5v+f(t), 9

dt

where the Langevin random ford€t) is characterized by
the white spectral densit;=2(Av?)/7. The random force

is determined by the short-time part 6f(s), thus corre-
sponding to the autocorrelation of accelerations at single
scattering events. The relaxation tesmv is determined by

the long-time part ofC,(s), thus corresponding to the cross
correlation of successive accelerations. As a consequence,
only the short-time part 08,(w) corresponds to the Lange- E (kV/cm)

vin source of uncorrelated fluctuations and as such it must be ) ) )
treated as the source of noise at a HD level. In the general FI_G. 3: Field dependence of the spectral density of the micro-
case of a HD approach when balance equations for differerfic@PIC noise sources; , S;; , ands;; (curves 1, 2, and 3, respec-
moments(e.g., velocity and energyare considered the ran- tively). Note the frequency independence of the above spectra.
dom force associated with each equation is determined by
the short-time part of the correlation function of the consid-
ered moment acceleration during scattering events. Accord-

ingly, the long-time part corresponds to the relaxation terms i . , ,
already included in the respective equations. The main ac'® the corresponding noise sources with a white spectrum.

vantage of such an approach is that the noise sources nderéA«i,AB; correspond to instantaneous variations of ve-
are, by definition uncorrelated in both time and space sincéCity and energy during theth scattering event. Equations

they are connected with fluctuations induced by single scaftl3 and(14) are the main result of the present theory and
tering events only. satisfy the requirement of describing voltage fluctuations

By considering the accelerations in momentum and enWith the proper Markovian microscopic noise sources and

ergy space as the microscopic source of fluctuations, let &€ associated generalized IF’s.
restrict ourselves to a HD approach based on the drift veloc- _‘I;ogether with all parameters of the model, namely,

§vée (10'® eVm/s?)

ovév (1024 m?/s3) fecbe (100 eV3/s)

2 N
— > AaAB (14)

e~ T =1

ity and mean energy conservation equatiohs m--,v,,v,,Q,,Q., the noise sources are assumed to de-
pend only on the local mean energy and as such can be

] v 1 ¢ obtained from stationary MC simulations of the bulk mate-
v=eEM —vv,—v —— - (NQ,)+ &, (1), (100 rial at the given constant electric field. The field dependence

of the noise sources calculated with the MC method for bulk
n-type GaAs is presented in Fig. 3. Its systematic increase

e=eEv—(e—eq) vo—v de 19 (nQ,)+&.(1), for fields above about 5 kV/cm is due to the presence of
Jx N ox hot-carrier effects.
1D Figure 4 reports the results of noise calculations obtained

with the usual meaning of symbols and where the sources dpr @ submicrometef0.3-0.6-04um n'nn"-type GaAs
fluctuations are the random forcég(t) andé,(t). In accor-  Structure with doping levelsn=5x10"cm™® and n*
dance with the general approach developed in Refs. 5 and & 10" cm™® at T=300 K and an applied voltage of 0.6 V.
the voltage fluctuations between the structure terminals due
to the velocity and energy fluctuations can be represented as

L o
SU(t)= fo dxf0 d7R,(X,7)n(X)dv(X,t—17)

+R.(X,7)N(X) Se (X, t—7)], (12

whereR, and R, are the response functions of the voltage
perturbation caused by spontaneous fluctuations of velocity
év and energyde at pointx due to scatterings. By applying

to the 5U(t) given by Eq.(12) the Wiener-Khintchine theo-
rem, the spectral density and voltage fluctuations can be ex-
pressed in a form similar to the IF formula of E4): £ (THz)

FIG. 4. Spectral density of voltage fluctuatiors,(f ) calcu-
lated by Eq.(13) and its three microscopic contributions corre-
sponding toS;; , S;;, andS;; (curves 1, 2, 3, and 4, respectively
wherea andg stand forv ande, VZ, g is thegeneralized IF  together withSy(f ) obtained directly by MC simulation of a sub-
associated with perturbation ef and 8, and micrometern*nn™ n-type GaAs diode at) =0.6 V (curve 5.

Sy(w)= }‘b fOLVZa(X,w)VZ}}(x,w)n(x)Smdx, (13
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Abrupt homojunctions are assumed. The calculation of theration equations when the accelerations in momentum and
generalized IKand the associated Green'’s functipfer ve-  energy space during scattering event are used as sources for
locity and energy perturbations is performed by means of théuctuations.
HD approach with input parameters taken from MC simu-
lations. The excellent agreement for tiSg(w) obtained This work has been performed within the Italian-
within the present approadisolid curvé and by the direct Lithuanian Project “Research and Development Cooperation
MC simulation of the voltage nois@lots fully supports the in Submicron Electronics” and supported by the Italian Min-
physical reliability of the microscopic theory here developed.ister of Foreign Affairs. Partial support from the NATO net-
In conclusion, the theoretical scheme we propose for thevorking linkage Grant No. HTECH.LG 960931, Computer
spectral density of voltage fluctuations shows that the spedNetworking Supplement No. CNS 970627, MADESS I
tral density of the microscopic fluctuation source can be deProject of the Italian Consiglio Nazionale delle Ricerche, and
scribed in terms of accelerations caused by single scatteringroject No. SA 11/96 from the Consejrde Educacio y
events. As a result, a generalization of the IF method is deCultura de la Junta de Castilla y Lieds gratefully acknowl-
veloped in the framework of the velocity and energy conseredged.
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